
Generating correct initial page tables from formal
hardware descriptions

Reto Achermann
University of British Columbia

Vancouver, Canada

David Cock
ETH Zurich

Zurich, Switzerland

Roni Haecki
ETH Zurich

Zurich, Switzerland

Nora Hossle
ETH Zurich

Zurich, Switzerland

Lukas Humbel
ETH Zurich

Zurich, Switzerland

Timothy Roscoe
ETH Zurich

Zurich, Switzerland

Daniel Schwyn
ETH Zurich

Zurich, Switzerland

Abstract
Modern hardware platforms are increasingly complex and
heterogeneous. System software use a hodgepodge of differ-
ent mechanisms and representations to express the memory
topology of the target platform. Considerable maintenance
effort is required to keep them in sync while often sharing
is impossible due to hard-coded values. Incorrect platform-
specific values in the hardware initialization sequence can
lead to security critical and hard-to-find bugs because of
misconfigured translation hardware, inaccessible devices, or
the use of bad pointers.

We present a better way for system software to express and
initialize memory hardware. We adopt an existing, powerful
hardware description language, and efficiently compile it to
generate correct initial page tables and memory maps for OS
kernels and firmware from a single system description.
We evaluate our system on multiple architectures and

platforms, and demonstrate that we can use the generated
data structures to successfully initialize translation hardware,
devices, memory maps, and allocators enabling easy support
of new hardware platforms.

1 Introduction
Hardware is becoming both more complex, and simultane-
ously more diverse: Even small SoCs now comprise a dozen
dramatically different processors (application cores, DSPs, ac-
celerators, etc.), bound together with a complex non-uniform
interconnect with each agent having a unique view of sys-
tem addresses. At the same time, the number of different
platforms to which software must be ported is growing dra-
matically each year, beyond the rate at which high-quality
initialization and management code can be written. One

PLOS 2021, October 25, 2021, Online Workshop
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

result is that, despite enormous investment by platform ven-
dors, the state of the art for platform initialization is a hodge-
podge of repurposed mechanisms, none quite fit-for-purpose,
and the widespread reuse of canned initialization snippets,
silently replicating and importing inaccurate assumptions
about hardware.
In this paper, we show by example that there is a better

way. We consider the particular case of page table gener-
ation and allocator initialization, which exposes much of
the complexity of modern hardware (including non-uniform
addressing and heterogeneous processing), while being crit-
ical to the correct and secure operation of the system. We
adopt an existing description language for addressing ar-
chitectures (Sockeye), which has been shown to be able to
express real, extremely complex modern systems, and which
has a rigorous formal interpretation (decoding nets). Finally,
we formulate the problem of system initialization as one of
compilation: can we (efficiently) generate correct initializa-
tion data (here, the initial page tables and allocator state)
from a Sockeye description of the system?
In the remainder of this paper we show that the answer

to the above question is a resounding yes. The decoding net
formalization allows us to frame the problem as determining
whether a page table exists which maps the desired CPU-
visible (“virtual”) address space to the projection of system
resources (RAM, device registers, etc.) onto the CPU’s “phys-
ical” addresses (as computed from the decoding net), within
the constraints of the virtual memory system (e.g. granu-
larity). As we will show, this requires simply the recursive
projection of resources in reverse direction (from enclosed
to enclosing AS) along the decoding net.
Lastly, we show that a straightforward expression of the

decoding net rules in Prolog produces an efficient solution,
which works in practice. We are able to generate correct
initial page tables and allocator state for numerous real plat-
forms, and boot and run an actual OS kernel using them.
We further show that the solution is fully general, and not
special-cased to any particular architecture, by generating

https://orcid.org/0000-0003-3263-7236
https://orcid.org/0000-0001-8326-7074
https://orcid.org/0000-0002-4412-9004
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PLOS 2021, October 25, 2021, Online Workshop Achermann, et al.

Sockeye
Description

Arm
Trusted

Firmware

Board
Init

UEFI
Hypervisor
OS kernel

Hardcoded
Memory map

Hardcoded
Memory map

Hardcoded
Memory map
DeviceTrees

Hardcoded
Memory map
DeviceTrees

Figure 1. An illustration of the boot process. Individual plat-
form descriptions above, and the proposed solution below.

both initialization data and configurations for the official
Arm Fast Models simulator for a variety of pathologically-
complex and nonuniform hypothetical platforms, and show-
ing that the generated configuration suffices to boot the OS
in all cases without any user intervention whatsoever.

2 Background
Consider the problem of simply booting a modern machine.
A typical boot sequence for an ARMv8 platform is shown in
Figure 1: a chain of different firmware and OS Components
loaded one after the other, each requiring information about
the hardware platform; indeed the OS is the last component
to be loaded and executed.

During boot, all this system software needs to understand
the complex memory topology of the platform and reflect
this in the hardware initialization sequence. A key part of
this challenge, and the one we focus on in this paper, is
the creation of the page tables to configure the processor’s
MMU (and System MMU), constructing the memory map for
populating the memory managers, and initializing devices at
the right location and programming them with the correct
memory addresses.

Today, each component in the boot sequence must initial-
ize hardware, or make use of hardware configured in a prior
step. The way this hardware is described today is typically
hardcoded by programmers (even for “discoverable hard-
ware”), and in a variety of ad-hoc and ill-defined formats.
This results in a considerable engineering burden for each
new device (as anyone who has done an OS bringup on a
new piece of modern hardware can attest), and moreover has
the potential to introduce catastrophic and hard-to-debug
errors as a result of memory misconfiguration [11, 13, 22],
or wrongly passed tables between components [12, 14, 15].
The memory topology of modern hardware platforms

makes this problem even worse [7]. Memory accesses from
processor cores and devices traverse multiple buses, memory
controllers, and memory translation and protection units be-
fore reaching their destination e.g. memory cell or device
register. For example, Figure 2 shows a typical modern SoC
from NXP, where the meaning of a (physical) address is rel-
ative to the processor core (A35 or M4) or DMA-capable
device (LPUART, PPB) leading to situations where the same

A35

MMU MMU MMU MMU

M4

MPU

DRAM LPUART PPB (M4 Private)

CM4 Bridge

System Memory Map M4 Memory Map
0x3722 0000 0x4162 0000

A35 A35 A35

Figure 2. Subset of the NXP i.MX8 memory layout. The
LPUART is accessed using a different addresses from the M4
cores, the >2GiB memory is only accessible from the A35
cores, the PPB is only reachable from the M4 cores.

resources appear at different addresses, or different resources
appear at the same address, viewed from different cores.

Current approaches
Today, computers use a mix of different mechanisms and rep-
resentations of system state (including memory maps) at dif-
ferent stages in the boot process: ACPI [16], UEFI [19], hard-
coded values, DeviceTree[9], etc. Linux even builds initial
page tables using hand-written assembly [18]. Arm Trusted
Firmware [17] uses a C data structure to initialize system
page tables [10].
Keeping these representations in sync is purely manual.

Hard-coding various aspects of the platform makes it hard
to share code between platforms and increases the main-
tenance effort needed to support a wide range of systems.
OS developers try to separate initialization code from the
platform-specific values it uses, but quickly run into problems:
in practice, modern hardware cannot be described faithfully
as a set of arguments to a C function, and the ideal of a single
externalized platform description is never achieved.

The most complete description format for platforms today
is DeviceTree [9], used by the Linux kernel to describe non-
discoverable platform information, and also employed (with
different device tree files) by some intermediate bootloaders.
DeviceTree files capture the platform’s application pro-

cessors, memory and caches, devices, interrupt sources, and
clocks in a tree-like data structure with a single root. While
sufficient for the Linux kernel, it fails to address the gen-
eral problem for several reasons. As its name suggests, a
DeviceTree is a tree. Modern machines are much more gen-
eral (possibly cyclic!) graphs, even in memory addressing [7].
Multiple processors (as in the NXP example above) would
require multiple, overlaid, consistent, trees. Moreover, De-
viceTree files are not well specified: most DeviceTree nodes
have addressing semantics that are defined by the C code of
the corresponding compatible Linux kernel drivers, rather
than a clean formal (or even semi-formal) description.
Consequently, DeviceTree files are of limited use in ini-

tializing a heterogeneous SoC, and cannot serve as basis for

Generating correct initial page tables from formal hardware descriptions PLOS 2021, October 25, 2021, Online Workshop

any assurance of correctness for firmware and kernels which
rely on them for configuration information.

Discussion
We take the position that, rather initializing and booting
a machine relying on replicated, hand-written, low-level
code, interpreting a semantic-free and inherently incomplete
description of the platform hardware, a better way is needed.

Instead, we start with a formally-specified way to describe
platforms, which can capture the full complexity of the mod-
ern systems with different processors and interconnects, and
then use this description to generate low-level system soft-
ware and firmware components that is correct by construc-
tion. Such an approach is not merely motivated by reducing
engineering cost, but is also an absolute prerequisite for
formally verifying low-level system software for a given
hardware platform.

In this paper, we demonstrate that initial page tables can
be constructed generically from formal specifications of the
system at hand. We not only show how this can be done
efficiently, but also demonstrate that it works for heteroge-
neous system with highly esoteric memory addressing. We
start with the formal representation of addressing in modern
SoCs that forms the foundation of our approach.

Decoding nets
We begin with the decoding net [2, 3], a formally specified
model that has been shown to capture the memory topol-
ogy of a broad variety of hardware platforms in a rigorous
and well-defined way. Decoding nets express the addressing
structure of a system as a directed graph: nodes represent
(virtual or physical) address spaces or devices (including
RAM), and edges the possible translation between them. The
model distinguishes address-space-local names (address), and
global names (name) that are qualified by their enclosing ad-
dress space. Each node may accept a set of (local) addresses
(e.g., RAM or device registers), and/or translate them to one
or more global names (e.g., MMU or PCI bridges).

name = Name nodeid address
node = Node accept :: {address}

translate :: address → {name}

An example decoding net for an x86 machine with a Xeon
Phi [8] accelerator card attached over PCI is shown in Fig-
ure 3. The dark nodes are leaf nodes in the graph, they don’t
translate addresses but only accept them.

The Sockeye language [21] is a syntax to express the mem-
ory topology of a hardware platform as a decoding net. Sock-
eye bears some superficial similarities to the DeviceTree lan-
guage, but in contrast has clear semantics that can express
decoding nets formally (and, indeed, generate Isabelle/HOL
representations of such nets). It provides syntactic elements

Xeon Phi Core (K1OM_CORE)

Xeon Phi Bus (PHYS)

Xeon Phi SMPTGDDR

IOMMUPCI Bridge WindowRAM

CPU Core

System Address Space

MMIO

LAPIC

BOOT

Figure 3. Example of a decoding net representing an x86
machine with a Xeon Phi accelerator card. Highlighted parts
are described in Figure 4

1 module XEONPHI {
2 memory (0 bits 40) GDDR
3 GDDR accepts [(0x0 to 0x1ffffffff) (mem)]
4 memory (0 bits 16) MMIO
5 MMIO accepts [(0x0 to 0xfffff) (devreg)]
6 memory (0 bits 40) PHYS
7 PHYS maps [
8 (0 x0000000000 to 0x00fedfffff)
9 to GDDR at (0 x000000000 to 0x0fedfffff);
10 (0 x00fee01000 to 0x01ffffffff)
11 to GDDR at (0 x0fee01000 to 0x1ffffffff);
12 (0 x08007D0000 bits 16)
13 to MMIO at (0 bits 16);
14 (0 x8000000000 to 0xffffffffff)
15 to SMPT_IN at (0x0 to 0x7fffffffff)]
16 // Description of one booting core
17 memory (0 bits 40) LAPIC
18 LAPIC accepts [(0 bits 12) (devreg)]
19 memory (0 bits 40) K1OM_CORE
20 K1OM_CORE maps [
21 (0 x00000000 to 0xfedfffff)
22 to PHYS at (0 x00000000 to 0xfedfffff);
23 (0 xfee00000 bits 12)
24 to LAPIC at (0 bits 12);
25 (0 xfee01000 to 0xffffffffff)
26 to PHYS at (0 xfee01000 to 0xffffffffff)]
27 // Initial pagetable for the boot process
28 BOOT maps [
29 (0x0 to 0xffffffffff)
30 to K1OM_CORE at (0x0 to 0xffffffffff)]}

Figure 4. Simplified Sockeye description of a Xeon Phi co-
processor PCI card. Note the map to SMPT_IN providing a
window to host resources.

such as regions and modules that help to express the system
in a concise and understandable way. A small excerpt from
the description for the system depicted in Figure 3 is shown
in Figure 4.

PLOS 2021, October 25, 2021, Online Workshop Achermann, et al.

Sockeye is designed around reusable blocks of decoding
net nodes called modules. Each module has a name, pa-
rameters, and a set of input and output nodes to be bound
on instantiation. Figure 4 is an excerpt of a Xeon Phi PCI-
based accelerator module, restricted to the view from its CPU
(K1OM_CORE). This address space in turn has a window
to its local APIC (LAPIC) and maps the rest to the core lo-
cal space (PHYS). This in turn contains memory (GDDR),
an MMIO region for the control registers (MMIO), and an
aperture on the system address space (SMPT_IN).
Sockeye allows memory regions to be tagged with predi-

cate logic terms. For example, memory regions are tagged
with with mem, and device registers with devreg. We ex-
ploit this information in correctly mapping devices in our
generated page tables.

3 Implementation
As discussed, we use generating initial kernel page tables as
an example as it exercises the model (specifically in identify-
ing device regions), without being dependent on the details
of a particular operating system as all kernels use quite simi-
lar layouts (in contrast to, say, the operation of their memory
allocators). We have also used the same techniques described
here for both the static initialization and dynamic runtime
state of the Barrelfish memory allocator and device manager,
which we hope to present in followup work.

The initial structure of a kernel’s virtual address space
is quite simple, and generally consists of a 1–1 mapping of
some portion of the system address space, including enough
RAM for the kernel’s internal needs, plus any devices (such
as interrupt controllers) that the kernel itself relies upon.
Additional device mappings are typically added at runtime,
either within the kernel’s own virtual address space (for
a monolithic kernel), or into a user process’s space (for a
microkernel-like system).

The challenge in constructing the initial page table is thus
not in constructing the page table itself. The virtual–physical
map is unconstrained down to the translation granule and
thus can trivially represent any desired mapping, and gen-
erally just consists of large 1–1 mappings in any case. The
specific problem to be solved by querying the decoding net is
rather to identify which regions are accessible to the proces-
sor (in particular the required devices), what their properties
are (e.g. device registers must usually be mapped uncached),
and at what address in the CPU’s ‘physical’ address space
they appear. The page-table generator needs to know, for
example, whether a large mapping must be split to specify
that some sub-range is to be mapped uncached for a device.

Complexity
As already described and as illustrated in Figure 3, the de-
coding network is a directed acyclic graph, with accepting
regions (here RAM or devices) at the leaves, and CPU cores

1 % Datatypes
2 NodeId :: [String]
3 Block :: block(base :: Int , limit :: Int)
4 Region :: region(id :: NodeId , blocks :: [Block],
5 prop :: BooleanExp)
6 % Predicates
7 translate(in :: Region , out :: Region).
8 accept(r :: Region).

Figure 6. Prolog datatypes and dynamic predicates

(or other bus-mastering agents) at the roots. It is thus possi-
ble in principle to compute the regions visible at any node
iteratively: beginning at the leaves, follow the edges in re-
verse to determine where this region appears in other spaces
(noting that it may appear in many, only a sub-region may
appear, it may appear twice, etc.), and repeating until all
regions have been projected up as far as the target node of
the CPU’s page table mappings.

Acc

Figure 5. A worst-
case decoding net for
region enumeration.

As Figure 5 illustrates, the num-
ber of regions (and hence complex-
ity of any algorithm enumerating
them) is exponential in the diame-
ter of the decoding net.We here see
one accepting region (Acc) mapped
twice into the immediately preced-
ing address space, which in turn is
mapped twice into its predecessor.
In this example we will generate at
least 2n distinct regions for a root
address space at distance n from
the resource. It is not necessarily possible to merge these
regions (e.g. if not contiguous), and thus all 2n regions might
need to be represented.
As solving for a desired configuration will in general in-

volve a search through this exponentially-large space (note
that runtime algorithms such as allocation have stricter re-
quirements than the initial page-table generation consid-
ered here), we cannot expect an efficient sub-exponential
algorithm to exist for the general case. In practice, such
pathological examples do not occur in actual hardware, and
established heuristic search strategies perform well. Indeed,
we take advantage of the fact that the experimental OS on
which we evaluate (Barrelfish) incorporates the Eclipse/CLP
solver for just such system configuration tasks (the so-called
SKB or System Knowledge Base [20]), and encode the prob-
lem quite directly as a set of Prolog predicates which (as
Section 4 shows) performs very well in practice.

Prolog Encoding
Figure 6 gives the syntax used to encode a decoding net as
Prolog assertions. The translate and accept facts are gen-
erated by straightforward compilation from a Sockeye de-
scription of the system such as that of Figure 3. For efficient

Generating correct initial page tables from formal hardware descriptions PLOS 2021, October 25, 2021, Online Workshop

Platform
description
(Sockeye)

Sockeye
compiler

Memory maps

Prolog
representation

Runtime library

Direct embedding

Page tables

Memory manager

Isabelle/Hol

Prolog

Engine

Arm FastModelsLISA+ Model Platform configuration

Figure 7. Integration of the query engine with the OS. High-
lighted components are part of the boot image.

evaluation, individual addresses are not expressed directly,
but only as part of larger blocks which in turn form (not-
necessarily-contiguous) regions.
The one-step projection from destination region D up

to some source region S in a predecessor address space is
expressed by the following predicate:

1 decode_step_rev(D,SI,S) :-
2 translate(SM ,DM),
3 reg_intersection(DM, D, SI),
4 DM = region(_, [block(DMBase , _)],_),
5 SI = region(_, [block(SIBase , SILimit)],_),
6 SM = region(SNode ,[block(SMBase ,_)],_),
7 SBase is SMBase + (SIBase - DMBase),
8 SLimit is SBase + (SILimit - SIBase),
9 S = region(SNode ,[block(SBase ,SLimit)],_).

This expresses the existence of a mapping from some region
of a source address space SM to some region of a destination
space DM , such that the intersection of DM and D is exactly
SI , or the image of the source region under the mapping. The
remaining conjuncts establish the position of S within the
mapping source region SM as a function of the position of
the image within DM .
Finding the location of all regions visible in some top-

level address space A requires solving for S for every value
of D for which accept(D) holds in the transitive closure of
decode_step_rev i.e. where the source region eventually
maps to the accepting region. Adding architecture-specific
constraints on allowable page-table entries (e.g. alignment
to 4kiB), and enumerating all solutions for S then gives the
values for all page table entries. Properties (e.g. cacheability)
are taken directly from the accepting region.

Output Generation and Integration
Figure 7 illustrates the integration of the decoding net query
results with the rest of the system. The results of the reachable-
region query are used in several locations, some at compile
time, and some at runtime:
Firstly, the returned mapping entries are encoded into

machine-specific page-table descriptors and output as static
initializers for a C array comprising the initial page tables.
As the page table is (on all these architectures) multilevel,

we exploit the linker and loader to correctly finalize the de-
scriptors. While the last-level descriptors directly refer to
known CPU-physical addresses, higher level descriptors re-
fer to lower-level tables, whose location is unknown at com-
pile time. Instead of hard-coding these addresses, we emit
carefully-generated ELF relocation records ensuring that the
correct addresses will be filled in either by the linker (if build-
ing static, position-dependent code) or the (boot-)loader if
the kernel is dynamically-loaded and position-independent.
Secondly, the query results are used to initialize various

other OS data structures, including the initial state of the
memory allocator (i.e. the location of all RAM regions), and
the device manager (which is told the resources required by a
driver for all statically-discoverable devices). These runtime
structures are thus guaranteed consistent with the kernel’s
internal view of the memory system, and the offline model.

Finally, the decoding net itself (expressed in the syntax of
Figure 6) is (on Barrelfish) seeded into the SKB. This data
is queried dynamically at runtime (and indeed, extended as
the result of online device discovery), and used to initialize
additional devices requiring, for example, IOMMU page table
configuration. This includes, among others, the Xeon Phi
accelerator used as an example here, which incorporates
numerous full CPU cores which run their own instance of the
OS kernel. The onlinemodel is further used (with appropriate
queries) to correctly allocate and map DMA-able memory
accessible to devices with different views of the system from
that of the CPU (again, including the Xeon Phi).

4 Evaluation
We evaluate our approach with two experiments: First, we
show that it is feasible to generate initial kernel page ta-
bles and memory maps for an OS running on various real
platforms (Section 4.1). Secondly, we demonstrate that it
even works for constructed, intentionally hard to deal with
memory topologies (Section 4.2).

4.1 Real Platforms
Previous work has shown that decoding nets can accurately
capture memory topologies of real hardware [3]. Here we
show that our Sockeye-generated page tables and memory
maps suffice to boot an OS kernel on real hardware.

We use the following existing Sockeye specifications:
• x86_64: Normal x86-64 PC, and QEMU emulator.
• k1om: Intel Xeon Phi co-processor (Knights Landing)
• Armv7: Pandaboard, a TI OMAP44xx based board
• Armv8: Arm Cortex-A57 FVP, a simulated dual core
reference platform, and QEMU emulator.

We generate page tables and other initialization data for each
platform as described in Section 3, and use them to boot Bar-
relfish [6]. The bootdriver uses the generated page tables to
initialize the kernel AS by simply setting the translation base
register to the start of the page table binary. The bootdriver

PLOS 2021, October 25, 2021, Online Workshop Achermann, et al.

Configurable Memory Map

Arm Cortex A57Arm Cortex A57

Configurable Memory Map

DRAM 0 DRAM 1 DRAM 2 DRAM 3

Figure 8. Memory topology of the Swapped + Private simu-
lator platform with shared regions DRAM 1/2 and private
regions DRAM 0/3

then loads the kernel, passing the locations of page tables
and device mappings as an argument. All kernel memory
and device accesses are via the generated tables.
In all cases, the kernel boots and configures all devices

correctly using the generated page tables installed.
Despite the simplicity of the Prolog implementation, the

generation process is robust enough to handle a wide vari-
ety of real hardware platforms. While we use Barrelfish for
demonstration, nothing about the generated tables or data
structures is system specific, and could be used just as well
in other OSs such as Linux or seL4.

4.2 Simulated Platforms
Here we show that the generator handles not only conven-
tional platforms but also ones with pathologically-hard mem-
ory topologies, where different agents (cores) in the system
have completely different views on memory.
As before, we specify the memory topology of the plat-

forms using the Sockeye language. Additionally, via another
backend we also generate a configuration for the Arm Fast-
Models simulator [4] which corresponds to the specified
topology. We use this to generate a range of unusual plat-
forms for evaluation as follows:

The base topology is that of the A57 FVP of the previous
experiment. From this, we generate 3 additional topologies,
whose basic structure is shown in Figure 8. There are a total
of four DRAM regions each one GiB in size. Each core has
its own configurable memory map in addition to its MMU,
mapping DRAM into its address space.

In the base case, both cores have the same view: [0,1,2,3]
the first GiB maps to DRAM0, the second to DRAM1, etc.
The remainder are configured as follows:

1. Swapped: DRAM is split in two and the address ranges
where the cores see the halves are swapped relative
to each other. One sees DRAM as [0,1,2,3] and the
other as [2,3,0,1].

2. Private: DRAM [1,2] are shared, and each core has
a private region of DRAM. We have the mappings
[1,2,0] and [1,2,3].

3. Swapped + Private: This combines the others: the shared
regions of the previous topology are swapped. The re-
sulting mappings are [1,2,0] and [2,1,3].

The description used to generate the simulator is also
used to generate page tables and memory maps. We supply

the configuration to Arm FastModels, generated directly
from the Sockeye file. As before, we boot Barrelfish on the
simulated systems.

In each case Barrelfish boots successfully into userspace on
both cores. Both cores use the same code with the exception
of the parts generated from the topology information. In
addition, processes on the two cores can communicate over
shared memory.
We see that the generation approach is robust enough

not only for real hardware, but in adversarial scenarios with
exceptionally peculiar memory topologies. That processes
can establish shared memory channels between cores in all
cases shows that the generated maps for the different cores
are consistent because they have been generated from a
single Sockeye platform description.

5 Future Work
Generating page tables is a first step towards OS configura-
tion based on the decoding net model. We plan to apply the
approach outlined in the paper to the full boot process. If we
can precisely specify the starting state for each boot stage,
then we can not only eliminate unsafe memory accesses due
to wrongly configured translation tables, but also precisely
specify the contract between two stages.
Similarly, we can use the same approach to express addi-

tional protection mechanisms (e.g., Arm TrustZone [5]) in
Sockeye and generate configurations to divide resources in
secure and non-secure worlds.

Moreover, we plan to use the runtime representation and
algorithms presented in this paper in memory allocators to
find memory regions that can be shared between the driver
software and accelerators/devices, and to guide configuration
using the recently proposed mmapx interface [1].

Finally, our deep embedding of Prolog in Isabelle/HOL pro-
vides a framework to link the algorithms and facts produces
by the Sockeye compiler back to the decoding net model and
enables proofs about its correctness.

6 Conclusion
In this paper, we have presented a system that leverages
the sound foundation provided by the decoding net model,
and the Sockeye language to generate platform-specific data
structures such as page tables and memory maps. We have
outlined the required algorithms, their implementation in
Prolog, and the integration into the build system to obtain a
page table binary image that is then used by the operating
system to configure the translation hardware.
Our evaluation qualitatively shows the application and

integration of the address space model into the OS toolchain
to generate low-level, platform-specific OS code and data
structures. Our approach and implementation thereof is func-
tional even when run on simulated platforms with unusual
address space topologies not supported by other systems.

Generating correct initial page tables from formal hardware descriptions PLOS 2021, October 25, 2021, Online Workshop

References
[1] Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Hum-

bel, Timothy Roscoe, and Daniel Schwyn. 2021. Mmapx: Uniform
Memory Protection in a Heterogeneous World. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan)
(HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 159–166. https://doi.org/10.1145/3458336.3465273

[2] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
2017. Formalizing Memory Accesses and Interrupts. Electronic
Proceedings in Theoretical Computer Science 244 (Mar 2017), 66–116.
https://doi.org/10.4204/eptcs.244.4

[3] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
2018. Physical Addressing on Real Hardware in Isabelle/HOL. In
Interactive Theorem Proving, Jeremy Avigad and Assia Mahboubi (Eds.).
Springer International Publishing, Cham, 1–19. https://doi.org/10.
1007/978-3-319-94821-8_1

[4] ARM Ltd. 2019. Development Tools and Software: Fast Models. https://
www.arm.com/products/development-tools/simulation/fast-models

[5] ARM Ltd. 2021. Arm TrustZone Technology. https://developer.arm.
com/ip-products/security-ip/trustzone.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (Big Sky, Montana, USA)
(SOSP ’09). ACM, New York, NY, USA, 29–44. https://doi.org/10.1145/
1629575.1629579

[7] Simon Gerber, Gerd Zellweger, Reto Achermann, Kornilios Kourtis,
Timothy Roscoe, and Dejan Milojicic. 2015. Not Your Parents’ Physical
Address Space. In Proceedings of the 15th USENIX Conference on Hot
Topics in Operating Systems (Switzerland) (HOTOS’15). USENIX Asso-
ciation, Berkeley, CA, USA, 16–16. http://dl.acm.org/citation.cfm?id=
2831090.2831106

[8] Intel Corporation. 2014. Intel Xeon Phi Coprocessor System Software
Developers Guide.

[9] Linux Kernel Documentation. 2019. Device Tree Source Format (version
1). Linux. Retrieved 06 August 2021 from https://git.kernel.org/pub/
scm/utils/dtc/dtc.git/plain/Documentation/dts-format.txt

[10] Arm Ltd. 2021. ATF - Translation (XLAT) Tables Library. https:
//trustedfirmware-a.readthedocs.io/en/latest/components/xlat-
tables-lib-v2-design.html

[11] Red Hat Bugzilla 2010. Bug 654665 - EFI/UEFI page table initialization
is incorrect for x86_64 in physical mode. Red Hat Bugzilla. https:
//bugzilla.redhat.com/show_bug.cgi?id=654665

[12] sunxi 2012. Unable to pass memory configuration from u-boot to kernel.
sunxi. https://github.com/linux-sunxi/u-boot-sunxi/issues/11

[13] Kernel.org Bugzilla 2013. Bug 56461 - Memory corruption on PAE x86
systems. Kernel.org Bugzilla . https://bugzilla.kernel.org/show_bug.
cgi?id=56461

[14] Linux Kernel Mailing List 2017. efi/x86: Prune invalid memory map
entries and fix boot regression. Linux Kernel Mailing List. https:
//lore.kernel.org/patchwork/patch/752197/

[15] launchpad 2019. Full RAM on Pi4 isn’t accessible when using u-boot.
launchpad. https://bugs.launchpad.net/ubuntu/+source/u-boot/+bug/
1847500

[16] UEFI Forum, Inc. 2021. Advanced Configuration and Power Interface
(ACPI) Specification. UEFI Forum, Inc. https://uefi.org/htmlspecs/
ACPI_Spec_6_4_html/

[17] Arm Ltd. 2021. Arm Trusted Firmware. Arm Ltd. https://github.com/
ARM-software/arm-trusted-firmware

[18] Linux 2021. Linux x86 boot code. Linux. https://github.com/torvalds/
linux/blob/master/arch/x86/boot/compressed/head_64.S

[19] UEFI Forum, Inc. 2021. Unified Extensible Firmware Interface (UEFI)
Specification. UEFI Forum, Inc. https://uefi.org/sites/default/files/

resources/UEFI_Spec_2_9_2021_03_18.pdf
[20] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon

Peter. 2011. ADeclarative LanguageApproach to Device Configuration.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). ACM, New York, NY, USA,
119–132. https://doi.org/10.1145/1950365.1950382

[21] Daniel Schwyn. 2017. Hardware Configuration With Dynamically-
Queried Formal Models. Master’s Thesis. Department of Computer
Science, ETH Zurich, Switzerland. https://doi.org/10.3929/ethz-b-
000203075

[22] Ulf Frisk. 2018. Total Meltdown? http://blog.frizk.net/2018/03/total-
meltdown.html

https://doi.org/10.1145/3458336.3465273
https://doi.org/10.4204/eptcs.244.4
https://doi.org/10.1007/978-3-319-94821-8_1
https://doi.org/10.1007/978-3-319-94821-8_1
https://www.arm.com/products/development-tools/simulation/fast-models
https://www.arm.com/products/development-tools/simulation/fast-models
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
http://dl.acm.org/citation.cfm?id=2831090.2831106
http://dl.acm.org/citation.cfm?id=2831090.2831106
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/plain/Documentation/dts-format.txt
https://git.kernel.org/pub/scm/utils/dtc/dtc.git/plain/Documentation/dts-format.txt
https://trustedfirmware-a.readthedocs.io/en/latest/components/xlat-tables-lib-v2-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/xlat-tables-lib-v2-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/xlat-tables-lib-v2-design.html
https://bugzilla.redhat.com/show_bug.cgi?id=654665
https://bugzilla.redhat.com/show_bug.cgi?id=654665
https://github.com/linux-sunxi/u-boot-sunxi/issues/11
https://bugzilla.kernel.org/show_bug.cgi?id=56461
https://bugzilla.kernel.org/show_bug.cgi?id=56461
https://lore.kernel.org/patchwork/patch/752197/
https://lore.kernel.org/patchwork/patch/752197/
https://bugs.launchpad.net/ubuntu/+source/u-boot/+bug/1847500
https://bugs.launchpad.net/ubuntu/+source/u-boot/+bug/1847500
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://doi.org/10.1145/1950365.1950382
https://doi.org/10.3929/ethz-b-000203075
https://doi.org/10.3929/ethz-b-000203075
http://blog.frizk.net/2018/03/total-meltdown.html
http://blog.frizk.net/2018/03/total-meltdown.html

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	4 Evaluation
	4.1 Real Platforms
	4.2 Simulated Platforms

	5 Future Work
	6 Conclusion
	References

